4-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD754244 is a 4-bit single-chip microcontroller which incorporates the EEPROM ${ }^{\top M}$ for key-less entry application.

It incorporates a 16×8-bit EEPROM, a 4-Kbyte mask ROM to store software, a 128×4-bit RAM to store the processing data, a processing CPU, and a carrier generator which easily outputs waveforms for infrared remote controller.

The details of functions are described in the following user's manual. Be sure to read it before designing.
μ PD754144, 754244 User's Manual: U10676E

FEATURES

- On-chip EEPROM: 16×8 bits (mapped to the data memory)
- On-chip key return reset function for key-less entry
- System clock oscillation circuit
- μ PD754144: RC oscillator (external resistor and capacitor)
- μ PD754244: Crystal/ceramic oscillator
- Low-voltage operation: VDD $=1.8$ to 6.0 V
- Timer function (4 channels)
- Basic interval timer/watchdog timer: 1 channel
- 8-bit timer counter : 3 channels
- On-chip memory
- Program memory (ROM)
4096×8 bits
- Data memory (static RAM) 128×4 bits
- Instruction execution time variable function suited for power saving.
- μ PD754144:
$4,8,16,64 \mu \mathrm{~s}$ (at fcc $=1.0-\mathrm{MHz}$ operation)
- μ PD754244:
$0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (at $\mathrm{fx}=4.19-\mathrm{MHz}$ operation)
$0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (at $\mathrm{fx}=6.0-\mathrm{MHz}$ operation)

APPLICATIONS

Automotive appliances such as key-less entry, compact data carrier, etc.
Unless contextually excluded, references in this data sheet to the μ PD754244 (crystal/ceramic oscillation: fx) mean the μ PD754144.
The μ PD754144 and μ PD754244 differ in the notation of their RC oscillation: whenever fx (RC oscillation notation for μ PD754244) is described, fcc should be substituted for the μ PD754144.

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package
μ PD754144GS-xxx-BA5	20-pin plastic SOP (300 mil, 1.27-mm pitch)
μ PD754144GS-xxx-GJG	20-pin plastic shrink SOP (300 mil, $0.65-\mathrm{mm}$ pitch $)$
μ PD754244GS-xxx-BA5	20-pin plastic SOP (300 mil, $1.27-\mathrm{mm}$ pitch $)$
μ PD754244GS-xxx-GJG	20-pin plastic shrink SOP (300 mil, $0.65-\mathrm{mm}$ pitch $)$

Remark xxx indicates ROM code suffix.

Functional Outline

Parameter		μ PD754144	μ PD754244
Instruction execution time		$\begin{aligned} & \text { - } 4,8,16,64 \mu \mathrm{~s} \\ & \text { (at fcc }=1.0-\mathrm{MHz} \text { operation) } \end{aligned}$	- 0.95, 1.91, 3.81, $15.3 \mu \mathrm{~s}$ (at $\mathrm{fx}=4.19-\mathrm{MHz}$ operation) - 0.67, 1.33, 2.67, $10.7 \mu \mathrm{~s}$ (at $\mathrm{fx}=6.0-\mathrm{MHz}$ operation)
On-chip memory	Mask ROM	4096×8 bits (0000H-0FFFH)	
	RAM	128×4 bits (000H-07FH)	
	EEPROM	16×8 bits ($400 \mathrm{H}-41 \mathrm{FH}$)	
System clock oscillator		RC oscillator (External resistor and capacitor)	Crystal/ceramic oscillator
General-purpose register		- 4-bit operation: 8×4 banks - 8 -bit operation: 4×4 banks	
Input/output port	CMOS input	On-chip pull-up resistor can be specified by mask option.	
	CMOS input/output	9 On-chip pull-up resistor connection can be specified by means of software.	
	Total	13	
Start-up time after reset		56/fcc	$2^{17} / \mathrm{fx}, 2^{15} / \mathrm{fx}$ (selected by mask option)
Stand-by mode release time		$2^{9} / \mathrm{fcc}$	$2^{20} / \mathrm{fx}, 2^{17} / \mathrm{fx}, 2^{15} / \mathrm{fx}, 2^{13} / \mathrm{fx}$ (selected by the setting of BTM)
Timer		4 channels - 8-bit timer counter (can be used as 16-bit timer counter) : 3 channels - Basic interval/watchdog timer : 1 channel	
Bit sequential buffer		16 bits	
Vectored interrupt		External: 1, Internal: 5	
Test input		External: 1 (key return reset function available)	
Standby function		STOP/HALT mode	
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	
Operating supply voltage		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V	
Package		- 20-pin plastic SOP (300 mil, $1.27-\mathrm{mm}$ pitch) - 20-pin plastic shrink SOP (300 mil, $0.65-\mathrm{mm}$ pitch)	

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 6
2. BLOCK DIAGRAM 8
3. PIN FUNCTION 9
3.1 Port Pins 9
3.2 Non-port Pins 10
3.3 Pin Input/Output Circuits 11
3.4 Recommended Connection of Unused Pins 12
4. SWITCHING FUNCTION BETWEEN MK I MODE AND MK II MODE 13
4.1 Difference between Mk I and Mk II Modes 13
4.2 Setting Method of Stack Bank Select Register (SBS) 14
5. MEMORY CONFIGURATION 15
6. EEPROM 18
7. PERIPHERAL HARDWARE FUNCTIONS 19
7.1 Digital Input/Output Ports 19
7.2 Clock Generator 19
7.3 Basic Interval Timer/Watchdog Timer 22
7.4 Timer Counter 23
7.5 Programmable Threshold Port (Analog Input Port) 27
7.6 Bit Sequential Buffer 16 Bits 28
8. INTERRUPT FUNCTION AND TEST FUNCTION 29
9. STANDBY FUNCTION 31
10. RESET FUNCTION 32
10.1 Configuration and Operation Status of RESET Function 32
10.2 Watchdog Flag (WDF), Key Return Flag (KRF) 36
11. MASK OPTION 38
12. INSTRUCTION SETS 39
13. ELECTRICAL SPECIFICATIONS 48
13.1μ PD754144 48
13.2μ PD754244 56
14. CHARACTERISTICS CURVES (REFERENCE VALUES) 67
14.1μ PD754144 67
14.2μ PD754244 69
15. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUES) 72
16. PACKAGE DRAWINGS 76
17. RECOMMENDED SOLDERING CONDITIONS 78
APPENDIX A. COMPARISON OF FUNCTIONS AMONG μ PD754144, 754244, AND 75F4264 80
APPENDIX B. DEVELOPMENT TOOLS 81
APPENDIX C. RELATED DOCUMENTS 84

1. PIN CONFIGURATION (TOP VIEW)

- μ PD754144
- 20-pin Plastic SOP (300 mil, 1.27-mm pitch) μ PD754144GS-×××-BA5
- 20-pin Plastic Shrink SOP (300 mil, 0.65-mm pitch) μ PD754144GS-×××-GJG

IC: Internally Connected (Connect to Vod directly)

- μ PD754244
- 20-pin Plastic SOP (300 mil, 1.27-mm pitch) μ PD754244GS-×××-BA5
- 20-pin Plastic Shrink SOP (300 mil, 0.65-mm pitch)
μ PD754244GS-xxx-GJG

Pin Identification

AV REF	: Analog reference
CL1 and CL2	: System clock (RC)
IC	: Internally connected
INT0	: External vectored interrupt 0
KR4 to KR7	: Key returns 4 to 7
KRREN	: Key return reset enable
P30 to P33	: Port 3
P60 to P63	: Port 6

P70 to P73	: Port 7
P80	: Port 8
PTH00 and PTH01	: Programmable threshold port analog inputs 0 and 1
PTO0 to PTO2	: Programmable timer outputs 0 to 2
$\overline{\text { RESET }}$: Reset
VDD	: Positive power supply
Vss	: Ground
X1 and X2	: System clock (crystal/ceramic)

2. BLOCK DIAGRAM

3. PIN FUNCTION

3.1 Port Pins

Pin Name	Input/Output	Alternate Function	Function	$\begin{array}{\|c} \text { 8-bit } \\ \text { I/O } \end{array}$	After Reset	I/O Circuit TYPE Note 1
P30	Input/Output	PTOO	Programmable 4-bit input/output port (PORT3). This port can be specified input/output bitwise. On-chip pull-up resistor connection can be specified by software in 4-bit units.	-	Input	E-B
P31		PTO1				
P32		PTO2				
P33		-				
P60	Input/Output	AVref	Programmable 4-bit input/output port (PORT6). This port can be specified input/output bitwise. On-chip pull-up resistor can be specified by software in 4-bit units ${ }^{\text {Note2 }}$. Noise eliminator can be selected with P61/INT0.	-	Input	(F)-A
P61		INTO				
P62		PTH00				
P63		PTH01				
P70	Input	KR4	4-bit input port (PORT7). On-chip pull-up resistor can be specified by software bit-wise.	-	Input	(B)-A
P71		KR5				
P72		KR6				
P73		KR7				
P80	Input/Output	-	1-bit input/output port (PORT8). On-chip pull-up resistor connection can be specified by software.	-	Input	(F)-A

Notes 1. Circled characters indicate the Schmitt-trigger input.
2. Do not specify an on-chip pull-up resistor connection when using the programmable threshold port.

3.2 Non-port Pins

Pin Name	Input/Output	Alternate Function	Function		After Reset	I/O Circuit TYPE ${ }^{\text {Note }}$
PTOO	Output	P30	Timer counter output pins		Input	E-B
PTO1		P31				
PTO2		P32				
INTO	Input	P61	Edge detection vectored interrupt input pin (detected edge can be selected) Noise elimination circuit can be selected.	Noise elimination circuit can be selected. Asynchronous input	Input	(F) -A
KR4 to KR7	Input	P70 to P73	Falling edge detection testable input pins		Input	(B) -A
PTH00	Input	P62	Threshold voltage-variable 2-bit analog input pins		Input	(F) -A
PTH01		P63				
KRREN	Input	-	Key return reset enable pin The reset signal is generated at the falling edge of KRn while KRREN is high in STOP mode.		Input	(B)
AVref	Input	P60	Reference voltage input pin		Input	(F) -A
CL1 CL2	-	-	Incorporated in the μ PD754144 only RC (for system clock oscillation) connection pin External clock cannot be input.		-	-
X1	Input	-	Incorporated in the μ PD754244 only Crystal/ceramic resonator (for system clock oscillation) connection pin When inputting the external clock, input the external clock to pin X1 and input the inverted phase of the external clock to pin X2.		-	-
X2	-					
$\overline{\text { RESET }}$	Input	-	System reset input pin (low-level active) Pull-up resistor can be incorporated (mask option).		-	(B) -A
IC	-	-	Internally Connected Connect directly to Vod.		-	-
Vdd	-	-	Positive supply pin		-	-
Vss	-	-	Ground potential		-	-

Note Circled characters indicate the Schmitt-trigger input.

3.3 Pin Input/Output Circuits

The μ PD754244 pin input/output circuits are shown schematically.

3.4 Recommended Connection of Unused Pins

Table 3-1. List of Recommended Connection of Unused Pins

Pin	Recommended Connecting Method
P30/PTO0	Input state : Independently connect to Vss or Vdd via a resistor. Output state: Leave open.
P31/PTO1	
P32/PTO2	
P33	
P60/AVref	
P61/INT0	
P62/PTH00	
P63/PTH01	
P70/KR4	Connect to Vod.
P71/KR5	
P72/KR6	
P73/KR7	
P80	Input state : Independently connect to Vss or Vdd via a resistor. Output state: Leave open.
KRREN	When this pin is connected to $V_{D D}$, internal reset signal is generated at the falling edge of the KRn pin in the STOP mode. When this pin is connected to Vss, internal reset signal is not generated even if the falling edge of KRn pin is detected in the STOP mode.
IC	Connect directly to Vdd.

4. SWITCHING FUNCTION BETWEEN MK I MODE AND MK II MODE

4.1 Difference between Mk I and Mk II Modes

The μ PD754244 75XL CPU has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by the bit 3 of the Stack Bank Select register (SBS).

- Mk I mode: Instructions are compatible with the 75X series. Can be used in the 75XL CPU with a ROM capacity of up to 16 Kbytes.
- Mk II mode: Incompatible with 75X series. Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16 Kbytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I Mode	Mk II Mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA !addr1 instruction CALLA !addr1 instruction	Not available	Available
CALL !addr instruction	3 machine cycles	4 machine cycles
CALLF !faddr instruction	2 machine cycles	3 machine cycles

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.
With regard to the number of stack bytes during execution of subroutine call instructions, the usable area increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected.
However, when the CALL !addr and CALLF !faddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format.
The SBS is set by a 4-bit memory manipulation instruction.
When using the Mk I mode, the SBS must be initialized to 1000B at the beginning of a program. When using the Mk II mode, it must be initialized to 0000B.

Figure 4-1. Stack Bank Select Register Format

Caution Because SBS. 3 is set to " 1 " after a $\overline{\text { RESET }}$ signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to " 0 " to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program memory (ROM) ... 4096×8 bits
- Addresses 0000H and 0001H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a $\overline{\mathrm{RESET}}$ signal is generated are written. Reset and start are possible at an arbitrary address.

- Addresses 0002 H to 000 FH

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt service can be started at an arbitrary address.

- Addresses 0020H to 007FH

Table area referenced by the GETI instruction ${ }^{\text {Note }}$.

Note The GETI instruction realizes a 1-byte instruction on behalf of an arbitrary 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the program steps.

- Data memory

- Data area

Static RAM
$\cdots 128$ words $\times 4$ bits $(000 \mathrm{H}$ to 07 FH$)$
EEPROM
... 16 words $\times 8$ bits $(400 \mathrm{H}$ to 41 FH$)$

- Peripheral hardware area
... 128 words $\times 4$ bits (F80H to FFFH)

Figure 5-1. Program Memory Map

Note Can be used in the MkII mode only.

Remark In addition to the above, a branch can be made to an address with the low-order 8-bits only of the PC changed by means of a BR PCDE or BR PCXA instruction.

Figure 5-2. Data Memory Map

6. EEPROM

The μ PD754244 incorporates 16 words $\times 8$ bit EEPROM (Electrically Erasable PROM) as well as static RAM (128 words $\times 4$ bit) as a data memory.

The EEPROM incorporated into the μ PD754244 has the following features.
(1) Written data is retained if power is turned off.
(2) 8-bit data manipulation (auto-erase/auto-write) is available by memory manipulation instruction as well as for static RAM. However available instructions are restricted.
(3) It can reduce loads of software because the auto-erase and/or auto-write operation is performed by hardware.
(4) Write operation control using the interrupt request The interrupt request is generated under following conditions.

- Terminates write operation
- Write status flag

It is possible to check whether enables or disables write operation by bit manipulation instructions.

7. PERIPHERAL HARDWARE FUNCTIONS

7.1 Digital Input/Output Ports

The following two types of I/O ports are provided.

- CMOS input (Port 7)	$:$	4
- CMOS I/O (Ports 3, 6, 8)	$:$	9
Total	$: \quad 13$	

Table 7-1. Types and Features of Digital Ports

Port Name	Function	Operation and Features	Remarks
PORT3	4-bit I/O	Can be set to input or output mode bit-wise.	Also used as PTO0 to PTO2 pins.
PORT6		Also used as AVREF, INT0, PTH00, and PTH01 pins.	
PORT7	4-bit input	4-bit input only port On-chip pull-up resistor connection can be specified by mask option bit-wise.	Also used as KR4 to KR7 pins.
PORT8	1-bit I/O	Can be set to input or output mode bit wise.	

7.2 Clock Generator

The clock generator provides the clock signals to the CPU and peripheral hardware. Its configuration is shown in Figures 7-1 and 7-2.

The operation of the clock generator is set with the processor clock control register (PCC).
The instruction execution time can be changed.

- μ PD754144
- $4,8,16,64 \mu \mathrm{~s}$ (when the system clock fcc operates at 1.0 MHz)
- μ PD754244
- $0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (when the system clock fx operates at 4.19 MHz)
- $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (when the system clock fx operates at 6.0 MHz)

Figure 7-1. μ PD754144 (RC Oscillation) Clock Generator Block Diagram

Note Instruction execution

Remarks 1. fcc: System clock frequency
2. $\Phi=$ CPU clock
3. PCC: Processor Clock Control Register
4. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

Figure 7-2. μ PD754244 (Crystal/Ceramic Oscillation) Clock Generator Block Diagram

Note Instruction execution

Remarks 1. fx: System clock frequency
2. $\Phi=$ CPU clock
3. PCC: Processor Clock Control Register
4. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

7.3 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.
(a) Interval timer operation to generate a reference time interrupt
(b) Watchdog timer operation to detect a runaway of program and reset the CPU
(c) Selects and counts the wait time when the standby mode is released (μ PD754244 only) ${ }^{\text {Note } 1}$
(d) Reads the contents of counting

Figure 7-3. Basic Interval Timer/Watchdog Timer Block Diagram

Notes 1. In the μ PD754144 (RC oscillation), the wait time cannot be specified when the standby mode is released. The oscillation stabilization wait time is negligible in the μ PD754144 and this device returns to the normal operation mode after counting $2^{9} / \mathrm{fcc}(512 \mu \mathrm{~s}$: @ fcc $=1.0-\mathrm{MHz}$ operation). In the μ PD754244 (crystal/ceramic oscillation), on the other hand, the wait time can be specified when the standby mode is released.
2. Instruction execution.

7.4 Timer Counter

The μ PD754244 incorporates three channels of timer counters. Its configuration is shown in Figures 7-4 to 7-6.

The timer counter has the following functions.
(a) Programmable interval timer operation
(b) Square wave output of any frequency to PTO0-PTO2 pins
(c) Count value read function

The timer counter can operate in the following four modes as set by the mode register.

Table 7-2. Mode List

Mode Channel	Channel 0	Channel 1	Channel 2	TM11	TM10	TM21	TM20
8-bit timer counter mode	\bigcirc	\bigcirc	O	0	0	0	0
PWM pulse generator mode	\times	\times	O	0	0	0	1
16-bit timer counter mode	\times		O	1	0	1	0
Carrier generator mode	\times	O		0	0	1	1

Remark O : Available
\times : Not available

Note Instruction execution

Caution When setting data to TMO, be sure to set bits 0 and 1 to 0 .

Figure 7-5. Timer Counter (Channel 1) Block Diagram

Note Instruction execution

Figure 7-6. Timer Counter (Channel 2) Block Diagram

Timer counter (channel 1) match signal Timer counter (channel 1) match signal (When 16 -bit timer counter mode) (When Carrier generator mode)

Note Instruction execution

Caution When setting data to TC2, be sure to set bit 7 to 0 .

7.5 Programmable Threshold Port (Analog Input Port)

The μ PD754244 provides analog input pins (PTH00, PTH01) whose threshold voltage (reference voltage) is selectable within sixteen steps. The following operations can be performed with these analog input pins.
(1) Comparator operation
(2) 4-bit resolution A/D converter operation (controlled by software)

Caution Do not specify an on-chip pull-up resistor connection for Port 6 when using the programmable threshold port.

Figure 7-7. Programmable Threshold Port Block Diagram

7.6 Bit Sequential Buffer 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing large data bit-wise.

Figure 7-8. Bit Sequential Buffer Format

Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MSB specification.

8. INTERRUPT FUNCTION AND TEST FUNCTION

Figure 8-1 shows the interrupt control circuit. Each hardware device is mapped in the data memory space.

The interrupt control circuit of the μ PD754244 has the following functions.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acknowledgement by the interrupt enable flag (IE $\times \times \times$) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQ×××). An interrupt generated can be checked by software.
- Release the standby mode. A release interrupt can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQ2) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

Notes 1. Noise eliminator (Standby release is disable when noise eliminator is selected.)
2. The INT2 pin is not provided. Interrupt request flag (IRQ2) is set at the KRn pin falling edge when $\operatorname{IM} 20=1$ and $\mathrm{IM} 21=0$.

9. STANDBY FUNCTION

In order to reduce power dissipation while a program is in a standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD754244.

Table 9-1. Operation Status in Standby Mode

Item Mode		STOP Mode	HALT Mode
Set instruction		STOP instruction	HALT instruction
Operation status	Clock generator	Operation stops.	Only the CPU clock Φ halts (oscillation continues).
	Basic interval timer/ watchdog timer	Operation stops.	Operable BT mode: The IRQBT is set in the basic time interval. WT mode: Reset is generated by the BT overflow.
	Timer	Operation stops.	Operable.
	External interrupt	INTO is not operable. Note INT2 is operable during KRn falling period	only.
	CPU	The operation stops.	
Release signal		- Reset signal - Interrupt request signal sent from interrupt enabled peripheral hardware - System reset signal (key return reset) generated by KRn falling edge when the KRREN pin $=1$	- Reset signal - Interrupt request signal sent from interrupt enabled peripheral hardware

Note Can operate only when the noise eliminator is not used $(\mathrm{IMO2}=1)$ by bit 2 of the edge detection mode register (IMO).

10. RESET FUNCTION

10.1 Configuration and Operation Status of RESET Function

There are three kinds of reset input: the external reset signal ($\overline{\mathrm{RESET}}$), the reset signal sent from the basic interval/watchdog timer, and the reset signal generated by a falling edge signal from KRn in the STOP mode. When any of these reset signals is input, an internal reset signal is generated. The configuration is shown in Figure 10-1.

Figure 10-1. Configuration of Reset Function

Each hardware is initialized by the RESET signal generation as listed in Table 10-1. Figure 10-2 shows the timing chart of the reset operation.

Figure 10-2. Reset Operation by $\overline{\text { RESET Signal Generation }}$

Note In the μ PD754144, the wait time is fixed to $56 / \mathrm{fcc}(56 \mu \mathrm{~s}$: @ $1.0-\mathrm{MHz}$ operation).
In the μ PD754244, the wait time can be selected from the following two time settings by means of the mask option.
$2^{17} / \mathrm{fx}$ (21.8 ms : @ 6.0-MHz operation, 31.3 ms : @ 4.19-MHz operation)
$2^{15} / \mathrm{fx}$ ($5.46 \mathrm{~ms}: ~ @ ~ 6.0-\mathrm{MHz}$ operation, 7.81 ms : @ 4.19-MHz operation)

Table 10-1. Hardware Status After Reset (1/3)

Hardware		$\overline{\mathrm{RESET}}$ signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation in operation
Program counter (PC)		Sets the low-order 4 bits of program memory's address 0000 H to the PC11-PC8 and the contents of address 0001 H to the PC7-PC0.	Sets the low-order 4 bits of program memory's address 0000 H to the PC11-PC8 and the contents of address 0001 H to the PC7-PC0.
PSW	Carry flag (CY)	Held	Undefined
	Skip flag (SK0 to SK2)	0	0
	Interrupt status flag (IST0, IST1)	0	0
	Bank enable flag (MBE, RBE)	Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.
Stack pointer (SP)		Undefined	Undefined
Stack bank select register (SBS)		1000B	1000B
Data memory (RAM)		Held	Undefined
Data memory (EEPROM)		Held ${ }^{\text {Note }} 1$	Held ${ }^{\text {Note }} 2$
EEPROM write control register (EWC)		0	0
General-purpose register (X, A, H, L, D, E, B, C)		Held	Undefined
Bank select register (MBS, RBS)		0, 0	0, 0
Basic interval timer/watchdog timer	Counter (BT)	Undefined	Undefined
	Mode register (BTM)	0	0
	Watchdog timer enable flag (WDTM)	0	0
Timer counter (channel 0)	Counter (TO)	0	0
	Modulo register (TMODO)	FFH	FFH
	Mode register (TM0)	0	0
	TOE0, TOUT F/F	0, 0	0, 0
Timer counter (channel 1)	Counter (T1)	0	0
	Modulo register (TMOD1)	FFH	FFH
	Mode register (TM1)	0	0
	TOE1, TOUT F/F	0, 0	0, 0
Timer counter (channel 2)	Counter (T2)	0	0
	Modulo register (TMOD2)	FFH	FFH
	High-level period setting modulo register (TMOD2H)	FFH	FFH
	Mode register (TM2)	0	0
	TOE2, TOUT F/F	0, 0	0, 0
	REMC, NRZ, NRZB	0, 0, 0	0, 0, 0

Notes 1. Undefined if STOP mode is entered during an EEPROM write operation. Also undefined if HALT mode is entered during a write operation and a RESET signal is input during a write operation.
2. If a $\overline{R E S E T}$ signal is input during an EEPROM write operation, the data at that address is undefined.

Table 10-1. Hardware Status After Reset (2/3)

Hardware		$\overline{\text { RESET }}$ signal generation in the standby mode	$\overline{\text { RESET }}$ signal generation in operation
Programmable threshold port mode register (PTHM)		00 H	00 H
Clock generator	Processor clock control register (PCC)	0	0
Interrupt function	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)
	Interrupt enable flag (IExxx)	0	0
	Interrupt priority selection register (IPS)	0	0
	INT0, 2 mode registers (IM0, IM2)	0, 0	0, 0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, C)	0	0
	Pull-up resistor setting register (POGA, B)	0	0
Bit sequential buffer (BSB0-BSB3)		Held	Undefined

Table 10-1. Hardware Status After Reset (3/3)

Hardware	$\overline{\text { RESET signal }}$ generation by key return reset	$\overline{\text { RESET signal }}$ generation in the standby mode	$\overline{\text { RESET signal }}$ generation by WDT during operation	$\overline{R E S E T}$ signal generation during operation
Watchdog flag (WDF)	Hold the previous status	0	1	0
Key return flag (KRF)	1	0	Hold the previous status	0

10.2 Watchdog Flag (WDF), Key Return Flag (KRF)

The WDF is cleared by a watchdog timer overflow signal, and the KRF is set by a reset signal generated by the KRn pins. As a result, by checking the contents of WDF and KRF, it is possible to know what kind of reset signal is generated.

As the WDF and KRF are cleared only by external signal or instruction execution, if once these flags are set, they are not cleared until an external signal is generated or a clear instruction is executed. Check and clear the contents of WDF and KRF after reset start operation by executing SKTCLR instruction and so on.

Table 10-2 lists the contents of WDF and KRF corresponding to each signal. Figure 10-3 shows the WDF operation in generating each signal, and Figure $10-4$ shows the KRF operation in generating each signal.

Table 10-2. WDF and KRF Contents Correspond to Each Signal

Hardware	External $\overline{\text { RESET }}$ signal generation	Reset signal generation by watch- dog timer overflow	Reset signal generation by the KRn input	WDF clear instruction execution	KRF clear instruction execution
Watchdog flag (WDF)	0	1	Hold	0	Hold
Key return flag (KRF)	0	Hold	1	Hold	0

Figure 10-3. WDF Operation in Generating Each Signal

Figure 10-4. KRF Operation in Generating Each Signal

11. MASK OPTION

The μ PD754244 has the following mask options:

- Mask option of P70/KR4 to P73/KR7

On-chip pull-up resistor connection can be specified for these pins.
(1) Do not connect an on-chip pull-up resistor
(2) Connect the $100-\mathrm{k} \Omega$ (typ.) pull-up resistor bit-wise

- Mask option of RESET pin

On-chip pull-up resistor connection can be specified for this pin.
(1) Do not connect an on-chip pull-up resistor
(2) Connect the 100-k (typ.) pull-up resistor

- Standby function mask option (μ PD754244 only) ${ }^{\text {Note }}$

The wait time when the RESET signal is input can be selected.
(1) $2^{17} / \mathrm{fX}$ (21.8 ms: @ $\mathrm{fx}=6.0-\mathrm{MHz}$ operation, 31.3 ms : @ $\mathrm{fx}=4.19-\mathrm{MHz}$ operation)
(2) $2^{15} / \mathrm{fX}(5.46 \mathrm{~ms}$: @ $\mathrm{fx}=6.0-\mathrm{MHz}$ operation, 7.81 ms : @ $\mathrm{fx}=4.19-\mathrm{MHz}$ operation)

Note This mask option is not provided for the μ PD754144, and its wait time is fixed to $56 / \mathrm{fcc}(56 \mu \mathrm{~s}$: @ fcc = 1.0-MHz operation).

12. INSTRUCTION SETS

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to "RA75X ASSEMBLER PACKAGE USERS' MANUAL - LANGUAGE (EEU-1367)". If there are several elements, one of them is selected. Capital letters and the + and - symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the registers can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, refer to " μ PD754144, 754244 user's manual (U10676E)".

Expression format	Description method
$\begin{aligned} & \text { reg } \\ & \text { reg1 } \end{aligned}$	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
rp rp1 rp2 rp' rp'1	```XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'```
rpa rpa1	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8 -bit immediate data or labe\| ${ }^{\text {Note }}$ 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1 caddr faddr	000H-FFFH immediate data or label 000H-FFFH immediate data or label 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (where bit $0=0$) or label
PORTn IExxx RBn MBn	PORT3, 6, 7, 8 IEBT, IET0-IET2, IEO, IE2, IEEE RB0-RB3 MB0, MB4, MB15

Note mem can be only used for even address in 8-bit data processing.
(2) Legend in explanation of operation
A : A register, 4-bit accumulator

B : B register
C : C register
D : D register
E : E register
H : H register
L : L register
X : X register
XA : XA register pair; 8-bit accumulator
$B C \quad$: BC register pair
DE : DE register pair
HL : HL register pair
XA' : XA' extended register pair
BC' : BC' extended register pair
DE' : DE' extended register pair
HL' : HL' extended register pair
PC : Program counter
SP : Stack pointer
CY : Carry flag, bit accumulator
PSW : Program status word
MBE : Memory bank enable flag
RBE : Register bank enable flag
PORTn : Port n ($\mathrm{n}=3,6,7,8$)
IME : Interrupt master enable flag
IPS : Interrupt priority selection register
IE××× : Interrupt enable flag
RBS : Register bank selection register
MBS : Memory bank selection register
PCC : Processor clock control register
. : Separation between address and bit
$(x \times) \quad$: The contents addressed by $x \times$
$x \times \mathrm{H} \quad:$ Hexadecimal data
(3) Explanation of symbols under addressing area column

*1	$\begin{aligned} & \mathrm{MB}=\mathrm{MBE} \cdot \mathrm{MBS} \\ & (\mathrm{MBS}=0,4,15) \end{aligned}$	Data memory addressing
*2	$\mathrm{MB}=0$	
*3	$\begin{aligned} \mathrm{MBE}=0: \mathrm{MB} & =0(000 \mathrm{H} \text { to } 07 \mathrm{FH}) \\ \mathrm{MB} & =15(\mathrm{~F} 80 \mathrm{H} \text { to } \mathrm{FFFH}) \\ \mathrm{MBE}=1: \mathrm{MB} & =\mathrm{MBS}(\mathrm{MBS}=0,4,15) \end{aligned}$	
*4	$\mathrm{MB}=15$, fmem $=$ FBOH to FBFH, FFOH to FFFH	
*5	$\mathrm{MB}=15$, pmem $=\mathrm{FCOH}$ to FFFH	\downarrow
* 6	addr $=000 \mathrm{H}$ to FFFH	Program memory addressing
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to (Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$	
	$\begin{aligned} \text { addr1 }= & (\text { Current PC) }-15 \text { to }(\text { Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to (Current PC) }+16 \end{aligned}$	
*8	caddr $=000 \mathrm{H}$ to FFFH	
*9	faddr $=0000 \mathrm{H}$ to 07FFH	
*10	taddr $=0020 \mathrm{H}$ to 007FH	
${ }^{* 11}$	addr1 $=000 \mathrm{H}$ to FFFH	

Remarks 1. MB indicates memory bank that can be accessed.
2. In *2, MB $=0$ independently of how MBE and MBS are set.
3. In *4 and *5, MB $=15$ independently of how MBE and MBS are set.
4. *6 to *11 indicate the areas that can be addressed.

(4) Explanation of number of machine cycles column

S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: $S=0$
- When the skipped instruction is a 1 - or 2-byte instruction: $S=1$
- When the skipped instruction is a 3-byte instruction ${ }^{\text {Note }}: ~ S=2$

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr, or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of CPU clock (=tcy); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer instruction	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String effect A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String effect A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String effect B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @HL+	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftarrow(\mathrm{rpa1})$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$A \leftarrow($ mem $)$	*3	
		XA, mem	2	2	$X A \leftarrow($ mem $)$	*3	
		mem, A	2	2	$($ mem $) \leftarrow \mathrm{A}$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$\mathrm{A} \leftarrow \mathrm{reg}$		
		XA, rp'	2	2	$X A \leftarrow r p^{\prime}$		
		reg1, A	2	2	reg $1 \leftarrow \mathrm{~A}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	$A \leftrightarrow(H L)$	*1	
		A, @HL+	1	2+S	A $\leftrightarrow(\mathrm{HL})$, then $L \leftarrow L+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+$ S	$\mathrm{A} \leftrightarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow(\mathrm{rpa1})$	*2	
		XA, @HL	2	2	XA ${ }_{(H L)}$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	XA \leftrightarrow (mem)	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftrightarrow r p^{\prime}$		
Table reference instructions	MOVT	XA, @PCDE	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{11-8+\mathrm{DE}}\right)_{\text {вом }}$		
		XA, @PCXA	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{11-8+} \mathrm{XA}\right)_{\text {вом }}$		
		XA, @BCDE	1	3	$\mathrm{XA} \leftarrow(\mathrm{BCDE})_{\text {Rom }}{ }^{\text {Note }}$	*6	
		XA, @BCXA	1	3	XA $\leftarrow(\mathrm{BCXA})_{\text {Rom }}{ }^{\text {Note }}$	*6	

Note Set "0" in register B.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Bit transfer instructions	MOV1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3}-2 . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow\left(\mathrm{H}+\mathrm{mem}_{3-\text {-o.bit })}\right.$	*1	
		fmem.bit, CY	2	2	(fmem.bit) $\leftarrow C Y$	*4	
		pmem.@L, CY	2	2	$\left(\right.$ pmem $\left.\left._{7-2+L_{3-2}} \operatorname{bit}^{\text {(}} \mathrm{L}_{1-0}\right)\right) \leftarrow \mathrm{CY}$	*5	
		@H+mem.bit, CY	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0.0 \mathrm{bit})} \leftarrow \mathrm{CY}$	*1	
Operation instructions	ADDS	A, \#n4	1	$1+$ S	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{n} 4$		carry
		XA, \#n8	2	$2+$ S	$\mathrm{XA} \leftarrow \mathrm{XA}+\mathrm{n} 8$		carry
		A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$	*1	carry
		XA, rp'	2	2+S	$X A \leftarrow X A+r p^{\prime}$		carry
		rp'1, XA	2	$2+$ S	rp '1 $\leftarrow \mathrm{rp}{ }^{\prime} 1+\mathrm{XA}$		carry
	ADDC	A, @HL	1	1	$A, C Y \leftarrow A+(H L)+C Y$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A+r p^{\prime}+C Y$		
		rp'1, XA	2	2	rp' $1, C Y \leftarrow r p^{\prime} 1+X A+C Y$		
	SUBS	A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}-(\mathrm{HL})$	*1	borrow
		XA, rp'	2	$2+$ S	$X A \leftarrow X A-r p^{\prime}$		borrow
		rp'1, XA	2	$2+$ S	rp '1 $\leftarrow \mathrm{rp}{ }^{\prime} 1-\mathrm{XA}$		borrow
	SUBC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A-r p^{\prime}-C Y$		
		rp'1, XA	2	2	rp'1, CY \leftarrow rp'1-XA-CY		
	AND	A, \#n4	2	2	$A \leftarrow A \wedge n 4$		
		A, @HL	1	1	$\mathrm{A} \leftarrow \mathrm{A} \wedge(\mathrm{HL})$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \wedge r p^{\prime}$		
		rp'1, XA	2	2	$r p^{\prime} 1 \leftarrow r p^{\prime} 1 \wedge X A$		
	OR	A, \#n4	2	2	$A \leftarrow A \vee n 4$		
		A, @HL	1	1	$\mathrm{A} \leftarrow \mathrm{A} \vee(\mathrm{HL})$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \vee r p^{\prime}$		
		rp'1, XA	2	2	rp ' $1 \leftarrow \mathrm{rp}$ ' $1 \vee \mathrm{XA}$		
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \forall r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\forall \mathrm{XA}$		
Accumulator manipulation instructions	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{n-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Increment and Decrement instructions	INCS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		rp1	1	1+S	$\mathrm{rp} 1 \leftarrow \mathrm{rp} 1+1$		$\mathrm{rp} 1=00 \mathrm{H}$
		@HL	2	$2+$ S	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	2+S	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	$2+$ S	$\mathrm{rp}{ }^{\prime} \leftarrow \mathrm{rp} \mathrm{p}^{\prime}-1$		rp' $=$ FFH
Comparison instruction	SKE	reg, \#n4	2	$2+$ S	Skip if reg $=\mathrm{n} 4$		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	1	$2+$ S	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	2	1+S	Skip if $A=(H L)$	*1	A $=(\mathrm{HL})$
		XA, @HL	2	2+S	Skip if $\mathrm{XA}=(\mathrm{HL})$	*1	$X A=(H L)$
		A, reg	2	$2+$ S	Skip if $A=r e g$		A=reg
		XA, rp'	2	2+S	Skip if $X A=r p^{\prime}$		XA=rp'
Carry flag manipulation instruction	SET1	CY	1	1	$\mathrm{CY} \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	1+S	Skip if $C Y=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		
Memory bit manipulation instructions	SET1	mem.bit	2	2	$($ mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	(fmem. bit$) \leftarrow 1$	*4	
		pmem.@L	2	2	$\left(\right.$ pmem $_{\left.7-2+L_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right) \leftarrow 1}$	*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $\left._{3-0 . \mathrm{bit}}\right) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	$($ mem.bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	$($ fmem. bit$) \leftarrow 0$	*4	
		pmem.@L	2	2		*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0}$. bit $) \leftarrow 0$	*1	
	SKT	mem.bit	2	$2+$ S	Skip if (mem. bit)=1	*3	(mem.bit)=1
		fmem.bit	2	$2+$ S	Skip if (fmem.bit)=1	*4	$($ fmem.bit) $=1$
		pmem.@L	2	$2+$ S		*5	(pmem.@L)=1
		@H+mem.bit	2	$2+$ S	Skip if ($\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})=1}$	*1	$(@ H+$ mem.bit)=1
	SKF	mem.bit	2	$2+$ S	Skip if (mem. bit) $=0$	*3	$($ mem.bit) $=0$
		fmem.bit	2	$2+$ S	Skip if (fmem. bit) $=0$	*4	$($ fmem.bit) $=0$
		pmem.@L	2	$2+$ S		*5	(pmem.@L)=0
		@H+mem.bit	2	2+S	Skip if ($\mathrm{H}+\mathrm{mem}_{3-0 . \mathrm{bit})=0}$	*1	$(@ H+m e m$. bit $)=0$

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Memory bit manipulation instructions	SKTCLR	fmem.bit	2	2+S	Skip if (fmem.bit)=1 and clear	*4	(fmem. bit) $=1$
		pmem.@L	2	$2+$ S	Skip if $\left(\right.$ pmem $\left._{7-2+L_{3-2 . b i t}}\left(L_{1-0}\right)\right)=1$ and clear	*5	(pmem.@L)=1
		@H+mem.bit	2	$2+$ S	Skip if (H+mem ${ }_{3-0}$. bit $)=1$ and clear	*1	(@H+mem. $\mathrm{bit}^{\text {(}}=1$
	AND1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $\left._{3-\text {-0.bit }}\right)$	*1	
	OR1	CY, fmem. bit	2	2	$C Y \leftarrow C Y \vee$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem7-2+ $\left.\mathrm{L}_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right)$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\mathrm{H}+\right.$ mem $_{3-\text { - }}$.bit $)$	*1	
	XOR1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall$ (fmem.bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3}-2 . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{H}+\mathrm{mem}_{3-0.0 \mathrm{bit})}\right.$	*1	
Branch instructions	$\mathrm{BR}^{\text {Note }} 1$	addr	-	-	$\left(\begin{array}{l} \mathrm{PC}_{11-0} \leftarrow \text { addr } \\ \left(\begin{array}{l} \text { Select appropriate instruction among } \\ \text { BR !addr BRCB !caddr, and BR \$addr } \\ \text { according to the assembler being used. } \end{array}\right) \end{array}\right.$	*6	
		addr1	-	-	$\begin{aligned} & \mathrm{PC}_{11-0} \leftarrow \text { addr } \\ & {\left[\begin{array}{l} \text { Select appropriate instruction among } \\ \text { BR !addr BRA !addr1, BRCB !caddr and } \\ \text { BR \$addr1 according to the assembler } \\ \text { being used. } \end{array}\right]} \end{aligned}$	*11	
		! addr	3	3	$\mathrm{PC}_{11-0} \leftarrow$ addr	*6	
		\$addr	1	2	$\mathrm{PC}_{11-0} \leftarrow$ addr	*7	
		\$addr1	1	2	$\mathrm{PC}_{11-0} \leftarrow$ addr1		
		PCDE	2	3	$\mathrm{PC}_{11-0} \leftarrow \mathrm{PC}_{11-8+\mathrm{DE}}$		
		PCXA	2	3	$\mathrm{PC}_{11-0} \leftarrow \mathrm{PC}_{11-8+} \mathrm{XA}$		
		BCDE	2	3	$\mathrm{PC}_{11-0} \leftarrow \mathrm{BCDE}^{\text {Note } 2}$	*6	
		BCXA	2	3	$\mathrm{PC}_{11-0} \leftarrow \mathrm{BCXA}^{\text {Note } 2}$	*6	
	BRA ${ }^{\text {Note }} 1$!addr1	3	3	$\mathrm{PC}_{11-0} \leftarrow$ addr1	*11	
	BRCB	!caddr	2	2	$\mathrm{PC}_{11-0} \leftarrow$ caddr $_{11-0}$	*8	

Notes 1. The above operations in the double boxes can be performed only in the Mk II mode.
2. "0" must be set to B register.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Subroutine stack control instructions	CALLA ${ }^{\text {Note }}$	laddr1	3	3	$\begin{aligned} & (\text { SP-2) } \leftarrow \times, \times, \text { MBE, RBE } \\ & \left(\text { SP-6) (SP-3) } \left(\text { SP-4) } \leftarrow \mathrm{PC}_{11-0}\right.\right. \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & \mathrm{PC}_{11-0} \leftarrow \text { addr1, SP } \leftarrow \text { SP- } 6 \end{aligned}$	*11	
	CALL ${ }^{\text {Note }}$!addr	3	3	$\begin{aligned} & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & \mathrm{PC}_{11-0} \leftarrow \text { addr, } \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	*6	
				4	$\begin{aligned} & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & \mathrm{PC}_{11-0} \leftarrow \text { addr, } \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$		
	CALLF ${ }^{\text {Note }}$!faddr	2	2	$\begin{aligned} & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & \mathrm{PC}_{11-0} \leftarrow 0+\mathrm{faddr}, \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$	*9	
				3	$\begin{aligned} & (\text { SP-2) } \leftarrow \times, \times, \text { MBE, RBE } \\ & \left(\text { SP-6) (SP-3) }(\text { SP-4 }) \leftarrow \mathrm{PC}_{11-0}\right. \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & \mathrm{PC}_{11-0} \leftarrow 0+\text { faddr, } \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$		
	RET ${ }^{\text {Note }}$		1	3	$\begin{aligned} & \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{MBE}, \mathrm{RBE}, 0,0 \leftarrow(\mathrm{SP}+1), \mathrm{SP} \leftarrow \mathrm{SP}+4 \end{aligned}$		
					$\begin{array}{\|l} \hline \times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4) \\ 0,0,0,0, \leftarrow(\mathrm{SP}+1) \\ \mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2), \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{array}$		
	RETS ${ }^{\text {Note }}$		1	$3+$ S	$\begin{aligned} & \mathrm{MBE}, \mathrm{RBE}, 0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}(11-0 \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+4 \\ & \text { then skip unconditionally } \end{aligned}$		Unconditional
					$\begin{aligned} & 0,0,0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}(11-0 \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \times, \times, \mathrm{MBE}, \mathrm{RBE} \leftarrow(\mathrm{SP}+4) \\ & \mathrm{SP} \leftarrow \mathrm{SP}+6 \\ & \text { then skip unconditionally } \end{aligned}$		
	RET ${ }^{\text {Note }}$		1	3	MBE, RBE, $0,0 \leftarrow(\mathrm{SP}+1)$ $\mathrm{PC}_{11-0} \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2)$ $\mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6$		
					$\begin{aligned} & 0,0,0,0 \leftarrow(\mathrm{SP}+1) \\ & \mathrm{PC}, 11-0 \leftarrow(\mathrm{SP})(\mathrm{SP}+3)(\mathrm{SP}+2) \\ & \mathrm{PSW} \leftarrow(\mathrm{SP}+4)(\mathrm{SP}+5), \mathrm{SP} \leftarrow \mathrm{SP}+6 \end{aligned}$		
	PUSH	rp	1	1	$(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{rp}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
		BS	2	2	$(\mathrm{SP}-1) \leftarrow \mathrm{MBS},(\mathrm{SP}-2) \leftarrow \mathrm{RBS}, \mathrm{SP} \leftarrow \mathrm{SP}-2$		
	POP	rp	1	1	$\mathrm{rp} \leftarrow(\mathrm{SP}+1)(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		
		BS	2	2	$\mathrm{MBS} \leftarrow(\mathrm{SP}+1), \mathrm{RBS} \leftarrow(\mathrm{SP}), \mathrm{SP} \leftarrow \mathrm{SP}+2$		

Note The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Interrupt control instructions	El		2	2	IME (IPS.3) $\leftarrow 1$		
		IEXXX	2	2	$\operatorname{IE} \times \times \times \leftarrow 1$		
	DI		2	2	IME (IPS.3) $\leftarrow 0$		
		IEXXX	2	2	$\mathrm{IE} \times \times \times \leftarrow 0$		
Input/output instructions	INNote 1	A, PORTn	2	2	A \leftarrow PORTn $\quad(\mathrm{n}=3,6,7,8)$		
	OUTNote 1	PORTn, A	2	2	PORTn $\leftarrow \mathrm{A} \quad(\mathrm{n}=3,6,8)$		
CPU control instructions	HALT		2	2	Set HALT Mode (PCC. $2 \leftarrow 1$)		
	STOP		2	2	Set STOP Mode (PCC. $3 \leftarrow 1$)		
	NOP		1	1	No Operation		
Special instructions	SEL	RBn	2	2	RBS $\leftarrow \mathrm{n} \quad(\mathrm{n}=0-3)$		
		MBn	2	2	MBS $\leftarrow \mathrm{n} \quad(\mathrm{n}=0,4,15)$		
	GET ${ }^{\text {Notes } 2,3}$	taddr	1	3	- When TBR instruction $\mathrm{PC}_{11-0} \leftarrow\left(\right.$ taddr) ${ }_{3-0}+($ taddr+1$)$	*10	
					- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-4)(\mathrm{SP}-1)(\mathrm{SP}-2) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & \mathrm{PC}_{11-0} \leftarrow \text { (taddr) }{ }_{3-0}+(\text { taddr}+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$		
					- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction
				3	- When TBR instruction $\mathrm{PC}_{11-0} \leftarrow\left(\right.$ taddr) ${ }_{3-0}+($ taddr +1$)$	*10	
				4	- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{11-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{11-0} \leftarrow \text { (taddr) }{ }_{3-0}+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr+1) instruction is executed.		Depending on the reference instruction

Notes 1. While the IN instruction and OUT instruction are being executed, MBE must be set to 0 , or MBE must be set to 1 and MBS must be set to 15 .
2. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.
3. The above operations in the double boxes can be performed only in the Mk II mode. The other operations can be performed only in the MkI mode.

13. ELECTRICAL SPECIFICATIONS

13.1μ PD754144

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol		Test Conditions	Ratings	Unit
Power supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	V			-0.3 to $V_{\text {dd }}+0.3$	V
Output voltage	Vo			-0.3 to $V_{D D}+0.3$	V
Output current, high	Іон	Per pin	P30, P31, P33, P60 to P63, P80	-10	mA
			P32	-20	mA
		For all pins		-30	mA
Output current, low	lol	Per pin		20	mA
		For all pins		90	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

- μ PD754144

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V)

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
RC							
oscillator	CL1 CL2						

Note Only the oscillator characteristics are shown. For the instruction execution time and oscillation frequency characteristics, refer to AC Characteristics.

Caution When using the oscillation circuit of the system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.
- μ PD754144

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level output current	Іон	Per pin	$\begin{aligned} & \text { P30, P31, P33, } \\ & \text { P60 to P63, P80 } \end{aligned}$			-5	mA
			$\begin{aligned} & \mathrm{P} 32, \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \\ & \mathrm{VOH}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V} \end{aligned}$		-7	-15	mA
		Total of all pins				-20	mA
Low-level output current	lob	Per pin				15	mA
		Total of all pins				45	mA
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	Port 3	$2.7 \mathrm{~V} \leq \mathrm{VDD}^{5} 6.0 \mathrm{~V}$	0.7 VdD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VdD		VDD	V
	$\mathrm{V}_{\text {IH2 }}$	Ports 6 to 8, KRREN, RESET	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.8 VdD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0.9 VdD		VDD	V
Low-level input voltage	VIL1	Port 3	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	0		0.3VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
	VIL2	Ports 6 to 8,	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0		0.2 VDD	V
		KRREN, RESET	$1.8 \mathrm{~V} \leq \mathrm{VDD}^{2} 2.7 \mathrm{~V}$	0		$0.1 \mathrm{~V}_{\mathrm{DD}}$	V
High-level output voltage	Vor	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , Іон $=-1.0 \mathrm{~mA}$		$V_{D D}-1.0$			V
		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V , І $\mathrm{l} \mathrm{H}=-100 \mu \mathrm{~A}$		VDD - 0.5			V
Low-level output voltage	Vol	$V_{\text {DD }}=4.5$ to 6.0 V	Port 3, loL $=15 \mathrm{~mA}$		0.6	2.0	V
			Ports 6, 8, $\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
		$\mathrm{V}_{\mathrm{DD}}=1.8$ to $6.0 \mathrm{~V}, \mathrm{I} \mathrm{OH}=400 \mu \mathrm{~A}$				0.5	V
High-level input leakage current	ILIH	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}$				3.0	$\mu \mathrm{A}$
Low-level input leakage current	Itı	V IN $=0 \mathrm{~V}$				-3.0	$\mu \mathrm{A}$
High-level output leakage current	ILOH	Vout $=\mathrm{V}_{\text {DD }}$				3.0	$\mu \mathrm{A}$
Low-level output leakage current	ILoL	Vout $=0 \mathrm{~V}$				-3.0	$\mu \mathrm{A}$
On-chip pull-up resistance	RL1	$\mathrm{V} \mathrm{IN}=0 \mathrm{~V}$	Ports 3, 6, 8	50	100	200	k Ω
	Rเ2		Port 7, $\overline{\text { RESET }}$ (mask option)	50	100	200	$\mathrm{k} \Omega$

- μ PD754144

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note } 1}$	loD1 IDD2	$1.0-\mathrm{MHz}$ RC oscillation $\begin{aligned} & \mathrm{R}=22 \mathrm{k} \Omega \\ & \mathrm{C}=22 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$				0.7	2.1	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$				0.3	1.0	mA
			HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$			0.5	1.8	mA
				$\mathrm{V} D=3.0 \mathrm{~V} \pm 10 \%$			0.25	0.9	mA
	lod 1	1.0-MHz RC oscillation $\begin{aligned} & \mathrm{R}=5.1 \mathrm{k} \Omega \\ & \mathrm{C}=120 \mathrm{pF} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$				1.15	3.5	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 3}$				0.55	1.6	mA
	IDD2		HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$			0.95	2.8	mA
				$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10 \%$			0.5	1.5	mA
	IDD3	$\begin{aligned} & \text { STOP } \\ & \text { mode } \end{aligned}$	$V_{\text {DD }}=1.8$ to 6.0 V					5	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
			$V_{\text {DD }}=3.0 \mathrm{~V} \pm 10 \%$				0.1	3	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=-40$ to $+40^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$

Notes 1. The current flowing through the on-chip pull-up resistor, the current during EEPROM writing time, and the current when the program threshold port (PTH) is operating are not included.
2. When the device is operated in the high-speed mode by setting the processor clock control register (PCC) to 0011H.
3. When the device is operated in the low-speed mode by setting PCC to 0000 H .

- μ PD754144

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note1 (Minimum instruction execution time $=1$ machine cycle)	tcy			2.0	4.0	128	$\mu \mathrm{s}$
RC oscillation frequency	fcc	$R=22 \mathrm{k} \Omega$,	$V_{D D}=3.6$ to 6.0 V	0.9	1.0 Note 2	1.2	MHz
		$\mathrm{C}=22 \mathrm{pF}$	$V_{D D}=2.2$ to 3.6 V	0.75	1.0 Note 2	1.15	MHz
			$V_{\text {DD }}=1.8$ to 3.6 V	0.5	$1.0{ }^{\text {Note } 2}$	1.15	MHz
			$V_{\text {DD }}=1.8$ to 6.0 V	0.5	$1.0{ }^{\text {Note } 2}$	1.2	MHz
		$\mathrm{R}=5.1 \mathrm{k} \Omega$,	$V_{D D}=3.6$ to 6.0 V	0.91	$1.0{ }^{\text {Note } 2}$	1.1	MHz
		$\mathrm{C}=120 \mathrm{pF}$	$V_{D D}=2.2$ to 3.6 V	0.76	$1.0{ }^{\text {Note } 2}$	1.05	MHz
			$V_{D D}=1.8$ to 3.6 V	0.51	$1.0{ }^{\text {Note } 2}$	1.05	MHz
			$V_{D D}=1.8$ to 6.0 V	0.51	$1.0^{\text {Note } 2}$	1.1	MHz
Interrupt input high- and	tinth, tintı	INTO	IM02 $=0$	Note 3			$\mu \mathrm{s}$
			IM02 = 1	10			$\mu \mathrm{s}$
		KR4 to KR7		10			$\mu \mathrm{s}$
RESET low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the time constants of the connected resistor (R) and capacitor (d) and the processor clock control register (PCC). The figure on the right shows the cycle time toy characteristics against the supply voltage VDD when the system clock is used.
2. This is the typical value when $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$.
3. 2 tcy or $128 / \mathrm{fcc}$ depending on the setting of the interrupt mode register (IMO).

- μ PD754144

EEPROM Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
EEPROM write current	IeEw	1.0 MHz ,	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		4.0	12	mA
		RC oscillation	$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		2.0	6	mA
EEPROM write time	teew	1.0 MHz , RC oscillation ${ }^{\text {Note }}$		3.8	4.6	10.0	ms
EEPROM write times	EEWT	$\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C}$		100000			times/byte
		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		80000			times/byte

Note Set EWTC 4 to 6 so as to be $18 \times 2^{8} / \mathrm{fcc}(4.6 \mathrm{~ms}$: @ fcc $=1.0-\mathrm{MHz}$ operation), considering the variation of the RC oscillation.

Comparator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} D \mathrm{DD}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Comparison accuracy	$V_{\text {Acomp }}$				± 100	mV
Threshold voltage	Vth		Note		Note	V
PTH input voltage	VIPTH		0		VDD	V
AV $\mathrm{VEF}^{\text {input voltage }}$	Viavref		1.8		VDD	\checkmark
Comparator circuit current consumption	Idos	When bit 7 of PTHM is set to 1		1		mA

Note The threshold voltage becomes as follows by settings bits 0 to 3 of PTHM. $V_{\text {th }}=V_{\text {iavief }} x(n+0.5) / 16(n=0$ to 15)

- μ PD754144

AC Timing Test Points

$\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$.	
$\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$.	$\mathrm{V}_{\mathrm{HH}}(\mathrm{MIN})$.
$\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$.	

Interrupt Input Timing

T0, KR4 to KR7

$\overline{R E S E T}$ Input Timing

Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsREL		0			
Oscillation stabilization wait time	twait	Release by RESET		$56 / \mathrm{fcc}$		
		Release by interrupt request				

- μ PD754144

Data Retention Timing (on releasing STOP mode by RESET)

Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

13.2μ PD754244

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Ratings	Unit
Power supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	V 1			-0.3 to $V_{\text {dD }}+0.3$	V
Output voltage	Vo			-0.3 to $V_{\text {dD }}+0.3$	V
Output current, high	IOH	Per pin	P30, P31, P33, P60 to P63, P80	-10	mA
			P32	-20	mA
		For all pins		-30	mA
Output current, low	Iol Note	Per pin		20	mA
		For all pins		90	mA
Operating ambient temperature	T_{A}			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} D=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

- μ PD754244

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VdD}=1.8$ to 6.0 V)

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) Note1		1.0		6.0 ${ }^{\text {Notes2, }, 3,4}$	MHz
		Oscillation stabilization time Note 5	After Vod reaches MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency(fx) Note1		1.0		$6.0^{\text {Notes2, 3, }} 4$	MHz
		Oscillation stabilization time Note3	$V_{D D}=4.5$ to 6.0 V			10	ms
						30	ms
External clock		X1 input frequency (fx) Note1		1.0		$6.0^{\text {Notes2, 3, }} 4$	MHz
		X 1 input high- and low-level widths (txh, txL)		83.3		500	ns

Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
2. If the oscillation frequency is $2.1 \mathrm{MHz}<\mathrm{fx} \leq 4.19 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.0 \mathrm{~V}$, set the processor control register (PCC) to a value other than 0011. If the PCC is set to 0011 , the rated machine cycle time of $1.9 \mu \mathrm{~s}$ is not satisfied.
3. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.0 \mathrm{~V}$, set the processor control register (PCC) to a value other than 0011 or 0010 . If the PCC is set to 0011 or 0010 , the rated machine cycle time of $1.9 \mu \mathrm{~s}$ is not satisfied.
4. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $2.0 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, set the processor control register (PCC) to a value other than 0011. If the PCC is set to 0011 , the rated machine cycle time of $0.95 \mu \mathrm{~s}$ is not satisfied.
5. Oscillation stabilization time is a time required for oscillation to stabilize after application of VDD, or after the STOP mode has been released.

Caution When using the oscillation circuit of the system clock, wire the portion enclosed in dotted lines

 in the figures as follows to avoid adverse influences on the wiring capacitance:- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.
- μ PD754244

Recommended Oscillator Constants

Ceramic resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 2 0}$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency(MHz)	Recommended Circuit Constant (pF)		Oscillation Voltage Range (VDD)		Remark
			C1	C2	MN. (V)	MAX. (V)	
Kyocera	KBR-1000F/Y	1.0	100	100	1.8	6.0	-
	KBR-2.0MS	2.0	47	47			
	KBR-4.19MSB	4.19	33	33			
	KBR-4.19MKC		-	-			Model with capacitor
	PBRC4.19A		33	33			-
	PBRC4.19B		-	-			Model with capacitor
	KBR-6.0MSB	6.0	33	33			-
	KBR-6.0MKC		-	-			Model with capacitor
	PBRC6.00A		33	33			-
	PBRC6.00B		-	-			Model with capacitor

Ceramic resonator ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Part Number	Frequency(MHz)	Recommended Circuit Constant (pF)		Oscillation Voltage Range (VDD)		Remark
			C1	C2	MIN. (V)	MAX. (V)	
Murata Mfg. Co., Ltd.	CSB1000J Note	1.0	100	100	2.0	6.0	$\mathrm{Rd}=2.2 \mathrm{k} \Omega$
	CSA2.00MG040	2.0					-
	CST2.00MG040		-	-			Model with capacitor
	CSA4.19MG	4.19	30	30	1.9		-
	CST4.19MGW		-	-			Model with capacitor
	CSA4.19MGU		30	30	1.8		-
	CST4.19MGWU		-	-			Model with capacitor
	CSA6.00MG	6.0	30	30	2.5		-
	CST6.00MGW		-	-			Model with capacitor
	CSA6.00MGU		30	30	1.8		-
	CST6.00MGWU		-	-			Model with capacitor
TDK	CCR1000K2	1.0	100	100	2.0		-
	CCR4.19MC3	4.19	-	-			Model with capacitor
	FCR4.19MC5						
	CCR6.0MC3	6.0					
	FCR6.0MC5						

Note When using the CSB1000J (1.0 MHz) made by Murata Mfg. Co., Ltd. as a ceramic resonator, a limiting resistor ($\mathrm{Rd}=2.2 \mathrm{k} \Omega$) is necessary (refer to the figure below). This resistor is not necessary when using the other recommended resonators.

Caution The oscillator constants and oscillation voltage range indicate conditions for stable oscillation, but do not guarantee oscillation frequency accuracy. If oscillation frequency accuracy is required for actual circuits, it is necessary to adjust the oscillation frequency of the oscillator in the actual circuit. Please contact directly the manufacturer of the resonator to be used.

- μ PD754244

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level output current	Іон	Per pin	$\begin{aligned} & \text { P30, P31, P33, } \\ & \text { P60 to P63, P80 } \end{aligned}$			-5	mA
			$\begin{aligned} & \mathrm{P} 32, \mathrm{~V} D \mathrm{DD}^{2} 3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V} \end{aligned}$		-7	-15	mA
		Total of all pins				-20	mA
Low-level output current	IoL	Per pin				15	mA
		Total of all pins				45	mA
High-level input voltage	V_{1+1}	Port 3	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.7VdD		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VdD		VDD	V
	$\mathrm{V}_{\text {IH2 }}$	Ports 6 to 8 , KRREN, $\overline{\text { RESET }}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.8 Vdo		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VdD		VDD	V
	Vінз	X1		VDD-0.1		VDD	V
Low-level input voltage	VIL1	Port 3	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0		0.3VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		$0.1 \mathrm{VDD}^{\text {d }}$	V
	VIL2	Ports 6 to 8, KRREN, $\overline{R E S E T}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0		0.2 VdD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 V do	V
	Vінз	X1		0		0.1	V
High-level output voltage	Vон	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 6.0 V , ІОН $=-1.0 \mathrm{~mA}$		VDD-1.0			V
		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V , Іон $=-100 \mu \mathrm{~A}$		VDD - 0.5			V
Low-level output voltage	Vol	$V_{\text {DD }}=4.5$ to 6.0 V	Port 3, lol $=15 \mathrm{~mA}$		0.6	2.0	V
			Ports 6, 8, $\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V , $\mathrm{IOH}=400 \mu \mathrm{~A}$				0.5	V
High-level input leakage current	ІІнн1	$\mathrm{V}_{1 N}=\mathrm{V}_{\mathrm{DD}}$	Pins other than X 1			3.0	$\mu \mathrm{A}$
	ILIH2		X1			20	$\mu \mathrm{A}$
Low-level input leakage current	ILIL1	$\mathrm{V} \mathrm{IN}=0 \mathrm{~V}$	Pins other than X1			-3.0	$\mu \mathrm{A}$
	ІІІн2		X1			-20	$\mu \mathrm{A}$
High-level output leakage current	ILOH	Vout $=\mathrm{V}_{\text {DD }}$				3.0	$\mu \mathrm{A}$
Low-level output leakage current	ILol	Vout $=0 \mathrm{~V}$				-3.0	$\mu \mathrm{A}$
On-chip pull-up resistance	RL1	$\mathrm{VIN}=0 \mathrm{~V}$	Port 3, 6, 8	50	100	200	$\mathrm{k} \Omega$
	RL2		Port 7, $\overline{\text { RESET }}$ (mask option)	50	100	200	k Ω

- μ PD754244

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note } 1}$	IDD1	$4.19-\mathrm{MHz}$ crystal oscillation $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	V DD $=5.0 \mathrm{~V} \pm 10 \%^{\text {Note }} 2$				1.5	5.0	mA
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%^{\text {Note } 3}$				0.23	1.0	mA
	IDD2		HALT mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$			0.64	3.0	mA
				$\mathrm{V} D=3.0 \mathrm{~V} \pm 10 \%$			0.20	0.9	mA
	IDD3	$\mathrm{X} 1=0 \mathrm{~V}$ STOP mode	$V_{\text {DD }}=1.8$ to 6.0 V					5	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$				0.1	3	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=-40$ to $+40^{\circ} \mathrm{C}$		0.1	1	$\mu \mathrm{A}$

Notes 1. The current flowing through the on-chip pull-up resistor, the current during EEPROM writing time, and the current during the program threshold port (PTH) operation are not included.
2. When the device is operated in the high-speed mode by setting the processor clock control register (PCC) to 0011H
3. When the device is operated in the low-speed mode by setting PCC to 0000 H

- μ PD754244

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{VDD}=1.8$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time Note 1 (Minimum instruction execution time $=1$ machine cycle)	tcy	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 2.0 V		1.9		64.0	$\mu \mathrm{s}$
		$V_{\text {DD }}=2.0$ to 2.7 V		0.95		64.0	$\mu \mathrm{s}$
		$V_{D D}=2.7$ to 6.0 V		0.67		64.0	$\mu \mathrm{s}$
Interrupt input high- and low-level width	tinth, tint	INTO	IM02 $=0$	Note 2			$\mu \mathrm{s}$
			IM02 = 1	10			$\mu \mathrm{s}$
		KR4 to KR7		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the oscillation frequency of the connected resonator (or external clock) and the processor clock control register (PCC). The figure on the right shows the cycle time toy characteristics against the supply voltage Vod when the system clock is used.
2. 2 tcy or $128 / \mathrm{f}_{\mathrm{x}}$ depending on the setting of the interrupt mode register (IMO).

- μ PD754244

EEPROM Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
EEPROM write current	Ifew	$4.19 \mathrm{MHz} \text {, }$ crystal oscillation	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		4.5	15	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		2.0	6	mA
EEPROM write time	teew			3.8		10.0	ms
EEPROM	EEWT	$\mathrm{T}_{\mathrm{A}}=-40$ to $+70^{\circ} \mathrm{C}$		100000			times/byte
write times		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		80000			times/byte

Comparator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} D \mathrm{DD}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Comparison accuracy	$V_{\text {Acomp }}$				± 100	mV
Threshold voltage	$V_{\text {TH }}$		Note		Note	V
PTH input voltage	VIPTH		0		VDD	V
AV $\mathrm{REF}^{\text {input voltage }}$	Viavkef		1.8		Vod	V
Comparator circuit current consumption	IdD5	When bit 7 of PTHM is set to 1		1		mA

Note The threshold voltage becomes as follows by settings bits 0 to 3 of PTHM.
$V_{\text {th }}=V_{\text {iavief }} x(n+0.5) / 16(n=0$ to 15$)$

- μ PD754244

AC Timing Test Points (Excluding X1 Input)

Clock Timing

- μ PD754244

Interrupt Input Timing

NT0, KR4 to KR7

$\overline{R E S E T}$ Input Timing

Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time Note 1	twalt	Release by $\overline{\text { RESET }}$		Note 2		ms
		Release by interrupt request		Note 3		ms

Notes 1. The oscillation stabilization wait time is the time during which the CPU operation is stopped to avoid unstable operation at oscillation start.
2. $2^{17} / \mathrm{fx}$ and $2^{15} / \mathrm{fx}$ can be selected with mask option.
3. Depends on setting of basic interval timer mode register (BTM) (see table below).

BTM3	BTM2	BTM1	BTM0	Wait Time	
				When $\mathrm{fx}=4.19 \mathrm{MHz}$	When $\mathrm{fx}=6.0 \mathrm{MHz}$
-	0	0	0	220/fx (Approx. 250 ms)	220/fx (Approx. 175 ms)
-	0	1	1	217/fx (Approx. 31.3 ms)	$2^{17} / \mathrm{fx}$ (Approx. 21.8 ms)
-	1	0	1	$2^{15} / \mathrm{fx}$ (Approx. 7.81 ms)	$2^{15} / \mathrm{fx}$ (Approx. 5.46 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (Approx. 1.95 ms)	$2^{13} / \mathrm{fx}$ (Approx. 1.37 ms)

Data Retention Timing (on releasing STOP mode by $\overline{\text { RESET }}$)

Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

14. CHARACTERISTICS CURVES (REFERENCE VALUES)
14.1μ PD754144

IdD vs. VDD (RC Oscillation, $R=22 \mathrm{k} \Omega, \mathrm{C}=22 \mathrm{pF}$)

- μ PD754144

Ido vs. Vod (System Clock: 4.19-MHz Crystal Resonator)

- μ PD754244

IdD vs. VDD (System Clock: 2.0-MHz Crystal Resonator)

15. RC OSCILLATION FREQUENCY CHARACTERISTICS EXAMPLES (REFERENCE VALUES)

fcc vs. $T_{A} \quad(R C$ Oscillation, $R=22 \mathrm{k} \Omega, \mathrm{C}=22 \mathrm{pF})$

(Sample C)

fcc vs. Vdd (RC Oscillation, $R=5.1 \mathrm{k} \Omega, \mathrm{C}=120 \mathrm{pF})$

fcc vs. $T_{A}(R C$ Oscillation, $R=5.1 \mathrm{k} \Omega, C=120 \mathrm{pF})$

(Sample B)

(Sample C)

16. PACKAGE DRAWINGS

20-pin Plastic SOP (300 mils)

note
Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
detail of lead end

ITEM	MILLIMETERS	INCHES
A	12.7 ± 0.3	0.500 ± 0.012
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.42_{-0.07}^{+0.08}$	$0.017_{-0.004}^{+0.003}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55 ± 0.05	0.061 ± 0.002
H	7.7 ± 0.3	0.303 ± 0.012
1	5.6 ± 0.2	$0.220_{-0.008}^{+0.009}$
J	1.1	0.043
K	$0.22_{-0.07}^{+0.08}$	$0.009_{-0.004}^{+0.003}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$

20-pin Plastic shrink SOP (300 mils)

detail of lead end

NOTE

1. Controlling dimension- millimeter.
2. Each lead centerline is located within $0.12 \mathrm{~mm}(0.005 \mathrm{inch})$ of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	6.7 ± 0.3	$0.264_{-0.013}^{+0.012}$
B	0.575 MAX.	0.023 MAX.
C	0.65 (T.P.)	0.026 (T.P.)
D	$0.32_{-0.07}^{+0.08}$	$0.013_{-0.004}^{+0.003}$
E	0.125 ± 0.075	0.005 ± 0.003
F	2.0 MAX.	0.079 MAX.
G	1.7 ± 0.1	$0.067_{-0.005}^{+0.004}$
H	8.1 ± 0.3	0.319 ± 0.012
1	6.1 ± 0.2	0.240 ± 0.008
J	1.0 ± 0.2	$0.039_{-0.008}^{+0.009}$
K	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.002}^{+0.004}$
L	0.5 ± 0.2	$0.020_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$

17. RECOMMENDED SOLDERING CONDITIONS

Solder the μ PD754244 under the following recommended conditions.
For the details on the recommended soldering conditions, refer to Information Document "Semiconductor Device Mounting Technology Manual (C10535E)".

For the soldering method and conditions other than those recommended, consult an NEC representative.

Table 17-1. Soldering Conditions of Surface Mount Type (1/2)
(1) μ PD754244GS-xxx-GJG: 20-pin plastic shrink SOP ($300 \mathrm{mil}, 0.65-\mathrm{mm}$ pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds max. $\left(210^{\circ} \mathrm{C}\right.$ min.), Number of reflow process: 2 max.	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds max. (200 ${ }^{\circ} \mathrm{C}$ min.), Number of reflow process: 2 max.	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Flow time: 10 seconds max., Number of flow process: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per side of device)	-

Caution Do not use different soldering methods together (except for partial heating).

(2) μ PD754144GS-xxx-GJG: 20-pin plastic shrink SOP ($300 \mathrm{mil}, 0.65-\mathrm{mm}$ pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds max. $\left(210^{\circ} \mathrm{C} \mathrm{min}\right.$.), Number of reflow process: 3 max.	IR35-00-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds max. $\left(200^{\circ} \mathrm{C} \mathrm{min),}\right.$. Number of reflow process: 3 max.	$\mathrm{VP} 15-00-3$
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Flow time: 10 seconds max., Number of flow process: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	$\mathrm{WS60-00-1}$
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per side of device)	-

[^0]Table 17-1. Soldering Conditions of Surface Mount Type (2/2)
(3) μ PD754144GS-xxx-BA5: 20-pin plastic SOP ($300 \mathrm{mil}, 1.27-\mathrm{mm}$ pitch)
μ PD754244GS-xxx-BA5: 20-pin plastic SOP (300 mil, 1.27-mm pitch)

Soldering Method	Soldering Conditions	Symbol
Infrared ray reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Reflow time: 30 seconds max. ($210^{\circ} \mathrm{C}$ min.), Number of reflow process: 2 max. Exposure limit: 7 days ${ }^{\text {Note }}$ (afterward, 10 -hour pre-baking at $125^{\circ} \mathrm{C}$ is required)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds max. ($200^{\circ} \mathrm{C}$ min.), Number of reflow process: 2 max. Exposure limit: 7 days ${ }^{\text {Note }}$ (afterward, 10 -hour pre-baking at $125^{\circ} \mathrm{C}$ is required)	VP15-107-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Flow time: 10 seconds max., Number of flow process: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature) Exposure limit: 7 days ${ }^{\text {Note }}$ (afterward, 10 -hour pre-baking at $125^{\circ} \mathrm{C}$ is required)	$\mathrm{WS60-107-1}$
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per side of device)	-

Note Maximum number of days during which the product can be stored at a temperature of $25^{\circ} \mathrm{C}$ and a relative humidity of 65% or less after dry-pack package is opened.

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. COMPARISON OF FUNCTIONS AMONG μ PD754144, 754244, AND 75F4264

Item		μ PD754144	μ PD754244	μ PD75F4264 ${ }^{\text {Note }}$
Program memory		Mask ROM 0000 H to 0FFFH (4096 x 8 bits)		Flash memory 0000H to 0FFFH (4096 x 8 bits)
Data memory	Static RAM	000 H to 07 FH (128×4 bits)		
	EEPROM	$\begin{aligned} & 400 \mathrm{H} \text { to } 41 \mathrm{FH} \\ & (16 \times 8 \text { bits }) \end{aligned}$		400 H to 43 FH (32 $\times 8$ bits)
CPU		75XL CPU		
General-purpose register		(4 bits $\times 8$ or 8 bits $\times 4$) $\times 4$ banks		
Instruction execution time		$\cdot 4,8,16,64 \mu \mathrm{~s}$ $\bullet 0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ $(@ \mathrm{fcc}=1.0-\mathrm{MHz}$ $(@ \mathrm{fx}=6.0-\mathrm{MHz}$ operation $)$ operation) $\cdot 0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ $(@ \mathrm{fx}=4.19-\mathrm{MHz}$ operation $)$		
I/O port	CMOS input	4 (on-chip pull-up resistor can be connected by mask option)		
	CMOS I/O	9 (on-chip pull-up resistor connection can be specified by means of software)		
	Total	13		
System clock oscillator		RC oscillator (resistor and capacitor are connected externally)	Ceramic/crystal oscillator	
Start-up time after reset		56/foc	$2^{17} / \mathrm{fx}, 2^{15} / \mathrm{fx}$ (can be selected by mask option)	$2^{15} / \mathrm{fx}$
Standby mode release time			$2^{20} / \mathrm{fx}, 2^{17} / \mathrm{fx}, 2^{15} / \mathrm{fx}, 2^{13} / \mathrm{fx}$ (can be selected by the setting of BTM)	
Timer		4 channels - 8 -bit timer counter: 3 channels (can be used as 16 -bit timer counter) - Basic interval timer/watchdog timer: 1 channel		
A/D converter		None		- 8-bit resolution x 2 channels (successive approximation, hardware control) - Can be operated from $V_{D D}=1.8 \mathrm{~V}$
Programmable threshold port		2 channels		
Vectored interrupt		External: 1, internal: 5		
Test input		External: 1 (key return reset function available)		
Power supply voltage		$V_{D D}=1.8$ to 6.0 V		
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		
Package		- 20-pin plastic SOP (300 mil, 1.27 -mm pitch) - 20-pin plastic shrink SOP (300 mil, $0.65-\mathrm{mm}$ pitch)		- 20-pin plastic SOP (300 mil, $1.27-\mathrm{mm}$ pitch)

Note Under development

APPENDIX B DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD754244.
In the 75XL series, the relocatable assembler which is common to the series is used in combination with the device file of each product.

Language processor

RA75X relocatable assembler	Host machine			Part number (product name)
		OS	Distribution media	
	PC-9800 series	MS-DOS ${ }^{\text {T }}$	3.5-inch 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{T M}$ and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13RA75X
			5-inch 2HC	μ S7B10RA75X

Device file	Host machine			Part number (product name)
		OS	Distribution media	
	PC-9800 series	MS-DOS	3.5-inch 2HD	μ S5A13DF754244
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6,2^{\text {Note }}}$	5-inch 2HD	μ S5A10DF754244
	IBM PC/AT and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13DF754244
			5-inch 2HC	μ S7B10DF754244

Note Ver. 5.00 or later have the task swap function, but it cannot be used for this software.

Remark Operation of the assembler and device file are guaranteed only on the above host machine and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD754244.

The system configurations are described as follows.

Hardware	IE-75000-R Note 1	In-circuit emulator for debugging the hardware and software when developing application systems that use the 75X series and 75XL series. When developing the μ PD754244, the emulation board IE-75300-R-EM and emulation probe EP-754144GS-R that are sold separately must be used with the IE-75000-R. By connecting with the host machine, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.			
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing application systems that use the 75X series and 75XL series. When developing the μ PD754244, the emulation board IE-75300-R-EM and emulation probe EP-754144GS-R which are sold separately must be used with the IE-75001-R. By connecting the host machine, efficient debugging can be made.			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use the μ PD754244. It must be used with the IE-75000-R or IE-75001-R.			
	EP-754144GS-R EV-9500GS-20 EV-950IGS-20	Emulation probe for the μ PD754244GS. It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the flexible boards EV-9500GS-20 (supporting 20-pin plastic shrink SOPs) and EV-9501GS-20 (supporting 20-pin plastic SOPs) which facillitate connection to a target system.			
Software	IE control program	Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronix I / F and controls the above hardware on a host machine.			
		Host machine	OS	Distribution media	Part No. (product name)
		PC-9800 series	$\begin{gathered} \text { MS-DOS } \\ \binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note 2 }}} \end{gathered}$	3.5-inch 2HD	μ S5A13IE75X
				5-inch 2HD	μ S5A10IE75X
		IBM PC/AT and its compatible machine	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13IE75X
				5-inch 2HC	μ S7B10IE75X

Notes 1. Maintenance parts

2. Ver. 5.00 or later have the task swap function, but it cannot be used for this software.

Remark Operation of the IE control program is guaranteed only on the above host machines and OSs.

OS for IBM PC
The following IBM PC OS's are supported.

OS	Version
PC DOS ${ }^{\text {TM }}$	Ver. 5.02 to Ver. 6.3 J6.1/V ${ }^{\text {Note }}$ to $\mathrm{J} 6.3 / V^{\text {Note }}$
MS-DOS	Ver. 5.0 to Ver. 6.22 $5.0 / V^{\text {Note }}$ to $\mathrm{J} 6.2 / \mathrm{V}^{\text {Note }}$
IBM DOS ${ }^{\text {TM }}$	J5.02/V ${ }^{\text {Note }}$

Note Supported only English mode.

Caution Ver. 5.0 and later have the task swap function, but it cannot be used for operating systems above.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device related documents

Document Name	Document Number	
	Japanese	
μ PD754144, 754244 Data Sheet	U10040J	This documentish
μ PD754144, 754244 User's Manual	U10676J	U10676E
$75 X L$ Series Selection Guide	U10453J	U10453E

Development tool related documents

Document Name		Document Number			
		Japanese		English	
Hardware	IE-75000-R/IE-75001-R User's Manual	EEU-846	EEU-1416		
	IE-75300-R-EM User's Manual	U11354J	U11354E		
	EP-754144GS-R User's Manual	U10695J	U10695E		
Software	RA75X Assembler Package User's Manual	Operation	EEU-731	EEU-1346	
		Language	EEU-730	EEU-1363	

Other related documents

| Document Name | Document Number | |
| :--- | :--- | :--- | :--- |
| | Japanese | English |
| IC Package Manual | C10943X | |
| Semiconductor Device Mounting Technology Manual | C10535J | C10535E |
| Quality Grades on NEC Semiconductor Devices | C11531J | C11531E |
| NEC Semiconductor Device Reliability/Quality Control System | C10983J | C10983E |
| Static Electricity Discharge (ESD) Test | MEM-539 | |
| Guide to Quality Assurance for Semiconductor Devices | C11893J | MEI-1202 |
| Microcomputer Related Product Guide - Other Manufacturers | U11416J | |

Caution These documents are subject to change without notice. Be sure to read the latest documents.

[MEMO]

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Benelux Office

Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

[MEMO]

The μ PD754244 is manufactured and sold based on a licence contract with CP8 Transac regarding the EEPROM microcomputer patent.
This product cannot be used for an IC card (SMART CARD).

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

EEPROM is a trademark of NEC Corporation.

MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in
the United States and/or other countries.
IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines
Corporation.

[^0]: Caution Do not use different soldering methods together (except for partial heating).

